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A PROJECTED LAGRANGIAN ALGORITHM FOR NONLINEAR MINIMAX OPTIMIZATION

by

Walter Murray

and

Michael L. Overton*

ABSTRACT

The minimax problem is an unconstrained optimization problem

whose objective function is not differentiable everywhere, and hence

cannot be solved efficiently by standard techniques for unconstrained

optimization. It is well known that the problem can be transformed

into a nonlinearly constrained optimization problem with one extra

variable, where the objective and constraint functions are continuously

differentiable. This equivalent problem has special properties which

are ignored if solved by a general-purpose constrained optimization

method. The algorithm we present exploits the special structure of the

equivalent problem. A direction of search is obtained at each

iteration of the algorithm by solving an equality-constrained quadratic

programming problem, related to one a projected Lagrangian method might

use to solve the equivalent constrained optimization problem. Special

Lagrange multiplier estimates are used to form an approximation to the

Hessian of the Lagrangian function, which appears in the quadratic program.

Analytical Hessians, finite-differencing or quasi-Newton updating may

be used in the approximation of this matrix. The resulting direction of

search is guaranteed to be a descent direction for the minimax objective

function. Under mild conditions the algorithms are locally quadratically

convergent if analytical Hessians are used.
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1. Introduction. Justification

The problem of concern is By__

MM?: mi fFM~x) I e Rn] Avail aud io1
Rt special

where FM i) = max (ffi), i = l,2,...,m]

and the functions f Rn- Rl  are twice continuously differentiable.

The function F C) is called the minimax function and MMP is usually
M

referred to as the minimax problem. The minimax problem is an unconstrained

optimization problem in which the objective function has discontinuous deriva-

tives. Moreover, any solution is usually at a point of discontinuity and con-

sequently it is inappropriate to use any of the known powerful methods for

unconstrained minimization to solve MMP. An equivalent problem to MRP is the

following nonlinearly constrained problem in which both the objective and

constraint functions are twice continuously differentiable:

EM?: min1m lI e+
x

subject to ci c) > 0, i = 1,2,...,m,

where clX) = xn+l - fix), i = 12,...,m)
ii

and xT_ xT, xn+l

We could solve EM? using one of the many methods available for the general
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constrained optimization problem:

NCP: min )
x

subject to c (G) (x) > 0, i 1,2,...,m ,
i

where F (G) and fc(G)I are arbitrary twice continuously differentiable

functions. It will be shown, however, that a method can be derived that

exploits the special structure of ENP.

The primary special feature of EMP from which many other properties

follow is that the minimax function F is itself a natural merit functionM

which can be used to measure progress towards the solution of EMP. For

problem NCP, in general such a natural merit function is not available, and

it is necessary to introduce an artificial one such as a penalty or aug-

mented Lagrangian function to weigh the constraint violation against the

decreasing of the objective function, or a barrier function to enforce

feasibility. All these merit functions require the definition of a para-

meter which is to some degree arbitrary and its selection can prove difficult.

In the case of penalty and augmented Lagrangian functions, difficulties may

also arise because often the global minimum of the merit function is not

the solution of the original problem.

The method we adopt to solve 04P essentially consists of two steps

at each iteration:

(1) Obtain a direction of search by solving and perhaps modifying

an equality-constrained quadratic programing problem (QP), related to one

a projected lagrangian algorithm might use to solve EMP. This procedure is
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described in full in subsequent sections.

(2) Take a step along the search direction which reduces the

minimax function. Because the minimax function is not differentiable,

it is important for efficiency to use a special line search

algorithm.

Projected Lagrangian algorithms for solving the general problem NCP

via successive quadratic programs have been proposed or analyzed by a

number of authors including Wilson (1963), Murray (1969a), Robinson (1974),

Wright (1976), Han (1977a), Powell (1977), and Mrray and Wright (1978).

We make further comments on the extent of the implications of the special

structure of EMP, and hence the relationship of our algorithm to these

algorithms for the general problem, in Section 15.

A number of other algorithms have been proposed for solving the non-

linear mininax problem. Our approach is most closely related to those due

to Han (1977b) and Conn (1979). We will discuss these further in Section 12,

after our algorithm has been described in full.

An important special case of MMP is the problem of minimizing the

f norm of a vector function f(i) e RP

f P: mn fF(R) Fin)~

where F GE) max i fi(i) I, i = l,2,...,m].

Handling this case in a special manner presents no essential difficulties.

However, in order to avoid unnecessarily complicated notation, we postpone
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discussion of this until Section 11.

We note that no convexity assumptions are made about the functions

f i(i) . The difficulties of finding global minima without convexityii

assumptions are well known - - we concern ourselves only with local

minima.

1.1 Notation. @*

Define x to be a solution of EMP . It follows that x , the

vector composed of the first n elements of x , is a solution to MW

and xn i= FM.x).

Let x (k ) denote the k-th approximation to x and x the k-th

approximation to x . In general, we will use a - placed above a vector

to denote the vector composed of the first n elements of the vector without

the -

At each iteration of the algorithm, x ( k +l ) is obtained by

setting

x(k+l)(k) a(k+l) (kl))

where p is the direction of search and 0 ) a positive scalar, is the

steplength. Note that this choice of x (k+l) immediately guarantees

that all the points x (k) are feasible for problem EMP, i.e.

ci(x (k)>o, ifl,...,m.

At any point x we define an active set of constraints of EMP as those

which we think will have the value zero at the solution x , based on the

information at x • This set will usually include all constraints with the

value zero at the point x and may also include some with positive values.

The exact procedure for initially selecting the active set at each iteration
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will be discussed in Section 10, and procedures for modifying this choice

will be described in Sections 5.2 and 6. We define t(= t(x)) to be the

number of active constraints at x , and write the vector of active con-

straints as c(x) e Rt . We similarly define f(i) as the vector of

active functions corresponding to the active constraints, i.e., those
* *

functions expected to have the value TX) at x . Let V() be the

n x t matrix whose columns (vj (x)) are the gradients of the active

functions, and let A(x) be the (n+l)x t matrix whose columns (a (x))

are the gradients of the active constraints. Thus

T t

ja=x wh r et 3 = (i ..i) e R

We define Y(x) to be a matrix with orthonormal columns spanning the range

space of A(x), and Z(x) to be a matrix with orthonormal columns spanning

the null space of A(x) . Let I s be the identity matrix of order s

Provided A(x) has full rank, we have that Y(x) has dimension (n+l) x t ,

Z(x) has dimension (n+l) X (n+l-t) , and

Y(x)T Y(x) = It, Z(x)T Z(x) = 1n+lt ,

Y(x) Z(x) = A(x)TZ(x) = 0

Let en+= (0 ,.. *, 0 9.)T lp+l. The Lagrangian function for

problem EMP is given by

5



Rt
where X E Rt is a vector of 1rne multipliers. The gradient of

L(x,X) with respect to x is en+1 - A X . We define the (n+l) x (n+l)

matrix W(x,,) to be the Hessian of the Lagrangian function with respect

to x • Thus

t (x)
W(X,X) X~ -i c I(x)

i~~l

0wi~ 0)

where t(x)W i ) = l~i. )

The term"'projected Hessian of the Lagrangian function"is used to indicate

projection into the null space of A(:, i.e., the matrix

Z(x) T W(x,))Z(x) . This matrix my also be written E(x)T Wi(i,K) f(x) ,

where i(x) consists of the first n rows of Z(x)

Often we will onit the argments from c, A , Z, etc. when it is

clear that they are evaluated at x . We use the notation V, A, Z ,

etc. to donote V,A, Z, etc. evaluated at x with the active set

correctly chosen, i.e., consisting of all those constraints with the value

zero at x



1.2 Necessary and Sufficient Conditions.

In the following we shall refer to the first- and second-order

constraint qualifications and the necessary and sufficient conditions

for a point x to be a local minimum of the general problem NCP as

defined in Fiacco and McCormick (1968). The conditions for x to be a

local minimum of EMP (and hence x of MMP) are simplifications of

these general conditions. The main simplification is that the first-

order constraint qualification always holds for EMP. To see this

observe the following. For any point x let p be any nonzero vector

satisfying

ai(x)Tp > 0 for all i s.t. c (x) = 0

where the vector ai is the gradient of ci  . Then p is tangent at

=O to the locally differentiable feasible arc

x (e) +1

max (FM(i + 5), xn+. + ePn~l1

The first-order conditions therefore reduce to the following (see Demyanov

and Malozemov (19T4) for an alternative derivation applied directly to MMP).

First-order necessary condition.

If x is a local minimum of EMP then there exists a vector of

Lagrange multipliers E Rt  such that

en~ - = o (1.1)
en+l 0

and X.> 0
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Two conditions which are equivalent to (i.I) are that x is a

*Tstationary point of L(x,k) with respect to x and that Z en1 = 0

Note that (i.i) implies that V is rank deficient and that the sum of

the multipliers is one.

The second-order constraint qualification does not necessarily hold

for EMP (for example at the origin for f1= X., f 2  -x , and f= - 2).

We therefore include this assumption in the statement of the second-order

necessary condition.

Second-order necessary condition.

If x is a local minimum of EMP and the second-order constraint

qualification holds, then Z W(x,X)Z , the projected Hessian of the

Lagrangian function, is positive semi-definite.

Sufficient condition.

If the first-order necessary condition holds at x , the lagrange

multipliers are all strictly positive, i.e. > 0 and ZT "1 is~ > 0Wand zZ is

positive definite, then x is a strong local minimum of problem EMP.

Thus in terms of problem MMP, FM(i) < FM(k) for all i such that

Ii - iI < 8 , for some 8 > 0.

Note that in the case where all the f. are linear it is well known

that a solution must exist with n+l active functions at i (see Cheney (1966)

for the case 1,P). Then normally Z is null and therefore the second-

order conditions are also null. The nonlinear problem, however, can have

a unique solution with anything from 1 to n+l functions active at x

This relationship is exactly analogous to that between linear and nonlinear

programning. For comments on the special case of I approximation and

the meaning of the Haar condition, see Section 11.
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2. Use Qf the Equivalent Problem EMP.

Clearly it is desirable that at every iteration the search direction

p be a descent direction for F M, i.e.

x(k) (k)F' ( ) , P) < 0 , where F( (k  p)is the

directional derivative limo (F(- (k), hp) - Fi(k))).

An equivalent condition is that p is a descent direction for each

function fi for which fik(k)) - 1(k)) (i.e. c i(x(k)) 0 )

A second desirable property for p arises from considering the active

set which consists of those constraints corresponding to functions we

expect to have the value F1 -i) at x . We wish to choose p so that

the first order change in these functions predicts that they will all

have the same value at (k) + p . An equivalent condition is:

A(=- ) (2.1)

and hence

(k) (k))T W (k)

for some value Pn+l ( the (n+l)st component of p ). If the active set

included all the constraints which are zero at x (k ) , then the condition

Pn+l < 0 (2.2)

also ensures that p is a descent direction for FM . In fact, at

every iteration the active set will initially include all such constraints,

but it may be desirable to drop one or more of them from the set to move
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off a constraint. Since the decrease in FM is limited to the smallest

decrease in any of the functions corresponding to c i(x (k) = 0 , it is

also desirable to insist that

(k))T (k)
a(x) p > 0 for all i such that ci(x)) =0 . (2.3)

Conditions (2.2) and (2.3) ensure that p is a first-order

feasible descent direction with respect to problem EMP. It is

straightforward to show the following from the above remarks.

Theorem 1. If (2.2) and (2.3) hold, i.e., p is a first-order

feasible descent direction for EMP, then p is a descent direction

for FM  and hence a sufficiently small step along it must result in

a reduction in FM

Note that the above does not guarantee that p is a feasible

direction for EMP, as illustrated by Figure 1. This causes no

difficulty since x n(k+l) is set to F(ixkW) and hence it is

always possible to obtain a lower feasible point for EMP if (2.2)

and (2.3) hold. Consequently it is important to look for a reduction

in F in the line search and not in a penalty function constructed
M

for EMP. In Figure 1,

FM (x (k) + (k)Ml p1
)  FM

but a penalty function may have a much higher value at x (k) + p

than at x (k ) since x ( k ) + p is infeasible for EMP

10



x (k) 
c (x) <o

1(k+l)

x p

-(k) -(k) -

x x

Example for n-m=1 where p is first-order feasible

but not feasible for EMP.

FIGURE 1



Thus we see that the importance of EMP is as a device to obtain a

search direction p along which F can be reduced in the line search.

We emphasize again that we wish (2.2) and (2.3) to hold so that p is a

descent direction for F. , and that the active set nature of the

algorithm indicates that (2.1) should also hold. It is not reasonable

to carry (2.1) one step further and demand that the second order change

in the active functions predict they all have the same new value, since

this would require computing and storing each of the Hessians of the

active functions, a process which is unwarranted especially since it may

not be possible to solve the resulting equations for p . It is the

case however that (2.1), (2.2) and (2.3) will usually not uniquely

define pand in the next section we utilize properties of EMP to

obtain an initial choice of p by solving a qua~dratic program (qY) based

on second order information incorporated in an approximation to the

Lagrangian function. The solution to this UP may not always satisfy (2. 1),

(2.2) and (2.3), and in subsequent sections we discuss how to modify the

initial choice to obtain a satisfactory search direction.

3. The GP Subproblem

The solution of EMP is at a minimum of the Lagrangian function in

the null space of the active constraint Jacobian at X.

The usual method for solving a general linearly constrained problem

is to approximate the objective function by a quadratic function and

12



then determine the search direction by solving some appropriate

quadratic program (QP). Consider therefore the quadratic program

(k) (k) (k) T
min L(x k , ) + (en+1 - Ax )x P +
p

1 pT W(x(k),A (k))p

subject to A(x(k)T - c((k))

where ') is an approximation to N.

An equivalent QP is given by

1 T Wx(k) (k) )p+e T(k) T( ())
Q .in mm W(xk, )+ e+ I p

p

subject to A(x(k)) - c(x(k))

Let us drop the arguments x (k)and from A and W, and

let Y and Z be the orthogonal matrices defined in Section 1.1.

The matrices Y and Z may be determined from the QR factorization

of A:

A Q R]= [Y Z)[R]

13



where R is an upper triangular matrix of order t . If A has full

rank and Z TWZ is positive definite, then the unique solution of QPl

can be expressed as the sum of two orthogonal components:

P= YPy + Zp Z  (3.1)

where Py E Rt  and PZ E Rn+l-t

We have

T TAp=R pY  -c (3.2)

and py is determined entirely by the constraints of QP1.

The vector pZ is given by the solution of

(zTWz)pz = - zT(en+ + WYpy) (3.3)

(see Murray and Wright (1978)).

In subsequent sections we will also wish to refer to a related Qp

and its solution, namely the one with the same quadratic form but homo-

geneous constraints:

(kT TQ : min 2 Wp +en+ I p

subject to A(x(k))T = 0

The solution to this is given by p ZqZ , where

(zTwz)q = - ZTen 1  (3.4)

14



At every iteration of our algorithm an attempt is made to set the

search direction p to the solution of Qfl,, but for various reasons

this may be inadequate (there may not even be a solution). Much of the

detailed discussion of the method is concerned with what action to take

in these circumstances. It is important to realize that it is only on

attempting to solve the QP that these inadequacies are revealed and if

the solution is not sought in a particular manner, certain deficiencies

are not ascertained. We are restricted in the action we may take by

requiring that the search direction satisfy (2.1), (2.2) and (2.3), and by

a need to limit the computational effort when the information on which

it is based has proved suspect. We also wish to arrange the computation

so that any computational efforts already invested can still be utilized

should the initial QY prove inadequate. In particular, provision must

be made for the possibility that the wrong active set is identified at

x() We will always insist that at the beginning of every iteration

the potential active set includes all constraints with zero value at

x (k) (and it will normally also include constraints with positive values).

In Section 5.2 and 6 we discuss how a constraint may then, if desired, be

deleted from the active set.

For the moment we assume that analytical Hessians are used to compute

W , but in Section 7 we discuss finite difference and quasi-Newton

alternatives. Notice that the definition of W requires an estimate of

* (itW
the Lagrange multipliers X to be made available at x .Before

discussing these other matters, we devote the next section to the subject

of multiplier estimates.

15



4. Lagrange Multiplier Estimates.

Although the arguments of Section 3 amply justify defining the

basic search direction p as the solution to QPl, it is not nearly

as clear how to define the lagrange multiplier estimate at x

These estimates are needed to define the matrix W and to determine

whether constraints should be deleted from the active set. Clearly

it is better to use new information obtained at the current point x(k)

rather than use the multipliers of the QP solved at the previous

iteration.

)L: The least squares estimate.

The most obvious multiplier estimate is the least squares solution

to the overdetermined system based on the first order necessary con-

ditions. Thus we define )L to be the solution of the least squares

problem

min IIA - en+112

It is well-known (see Golub (1965)) that the least squares problem can

be solved by using the QR factorization of A , which we introduced in

the last section to solve QPl. The estimate XL is called a first-order

multiplier estimate because

11'IL , XMII = o(IIx (k)- t1)

where xM is the minimum of EMP on the manifold defined by the current

active set, i.e., the solution of

min +l subject to c(x) = 0
x

16



and )M is the corresponding Lagrange multiplier vector.

The multiplier estimate X L has the following property. Suppose for

some reason p is unsatisfactory and we wish to delete a constraint from the

active set. If (XL)j < 0 and we delete constraint j , then the steepest

descent direction in the nullspace of the new active constraint Jacobian

is guaranteed to be first-order feasible with respect to the deleted con-

straint. Define A as A with aj deleted, and Z by

AZ = 0, ZZ = In+2 t , Z =[Z z] . (.)

Then the steepest descent step in the new null space is given by

= - Z Z en+1  (4.2)

and we have

Tai Z s- >0 (4.3)

The Newton step in the null space, given by Z q , where

(zw Z)'- - Zen 1  (4.4)

does not in general satisfy
jT

See Gill and Murray (1979) for the proof of these statements in the

context of linearly constrained optimization.

A special estimate for problem EMP.

A more appropriate estimate than XL can be obtained by

considering the special structure of EMP. The least squares solution

17



is motivated by the fact that the overdetermined set of equationsAI
A en+I  is only an approximation to the set of equations which

hold at xM , the minimum on the manifold. How-er, the (n+l)st
IT

equation e X = 1 is exactly, not approximately, the equation which

holds at xM . We therefore define another multiplier estimate )C

as the least squares solution to the first n equations subject to
^T

the constraint e XC = I . Thus XC is the solution to the con-

strained least squares problem

in l 2V I subject to e = I

X

In fact we can show that XC is exactly XL multiplied by a scalar

greater than or equal to one.

Theorem 2. Assume A has full rank and let ?L and XC be defined

as above. Then XC =.Lwhere = 1 > 1

Proof. If V does not have full rank then let X 0 be such that

V X= 0. We have eTX J 0 since otherwise A = 0 Thus
3L--

XC^ X with both the least squares and the constrained

least squares problems having zero residuals, and the result follows.

Therefore assume that V has full rank. The vector XL  satisfies

ATT
XL= A A An+

^T^ ^^T 1^
V (VV+ee )-e

It follows from the Sherman-Morrison formula (see Householder (1964,

p. 123)), that

18



1 T
XL = d eT d e d

L 1+;T4

AT d (If.6)

where d = (vTV)- (-.7)

Note that eTd> 0 since (vT)-I is positive definite.

Since X is the solution to a constrained optimization
F' C

problem it follows from the corresponding first order necessary

conditions (writing JIV X12 = X V V X) that

2VVe

where i is the Lagrange multiplier associated with the constraint

AT AT AT -eXTk= . Since ed> o and e c l we have

1xc :- d
C eTd

and hence the result follows. Alternatively the equation for xC could

have been obtained by scaling the last equation in the unconstrained

least squares problem and observing that the right hand side of (4.6),1

modified to include the scale factor, tends to d as the scale factor
e~d

goes to infinity. C]

Note that it would be highly ill-advised to compute X and X
L XC

by computing d via (4.7). If x ( k ) were equal to XM , the minimum

on the manifold, then V would be rank-deficient, but A would not

19



in general, and hence if x W is close to xM  the condition number

of V V may be much bigger than that of A A Since solving the

least squares problem using the QR factorization of A is alrady a

better conditioned process than explicitly using A A (via the

normal equations) it is clear that using the QR factorization of A

is far preferable to using (4.7).

Using the scaled estimate XC instead of XL will result in

different decisions about whether to delete constraints from the

active set since, as will be explained in Section 6, the magnitudes

as well as the signs of the estimates are used to make the decision.

Furthermore, using AC  instead of XL in general increases the

magnitude of W and hence affects both the direction (if c O)

and the magnitude of the solution to QPI. The following example

illustrates that it may often be beneficial to use AL rather than

XC Let n = m = I and F(-x) = fI (R) = ' . Let the current

estimate of the solution be x =k) 2. Then 4 and A = 1

XL = - and AC = 1 . Using Xc for W results in the exact step

to the solution being taken, but using XL results in one seventeen

times too big. Clearly similar examples can be constructed with a

larger number of active constraints. The choice of AC over XL

essentially arises from the fact that problem MMP is in some sense

naturally scaled -- the functions of MM cannot be individually scaled

without changing the solution while the constraints of NCP can be in-

dividually scaled in general.

20



X:A second special estimate.

The estimate X Cis not the only multiplier estimate that might

be constructed to take the special form of EMP into account. Since we

know that V would be rank-deficient if x were the minimum on the

manifold, a reasonable alternative would be to assume that V is close

to being rank-deficient and define X Das the solution to an appropriate

rank deficient least squares problem, scaled so that e X D =1.Let the

QR factorization of Vwith column pivoting be

= R I ]n

where Qis an orthogonal matrix, nI is a permutation matrix, s is

a vector and T is a scalar. If T* 0 then the vector

X n1 [ R Is1
and its multiples are solutions to the rank-deficient least squares

problem VX ft 0 .Therefore let

1
e eX

The estimate X Dis not a multiple of X Lin general and if a

constraint is deleted corresponding to (X D) < 0 , it is not true that

the steepest descent step satisfies (4-.3). This alone makes the use of

D questionable. Furthermore, to obtain X Dit would be necessary that

the QR factorization of V be done with column pivoting (otherwise it

makes no sense to ignore T) and this means it could not be obtained

21



by simply updating the factorization of A . The main flaw of XD is

that it ignores the information given by 7 even though V may not

be nearly rank deficient. For these reasons we do not consider X any

further.

PW : A second-order estimate.

The second-order Lagrange multiplier estimate pW is defined as

the exact multipliers corresponding to the solution p of QPl, i.e. the

solution to the consistent set of equations

AOW = en+1 + Wp , (4.7)

where p is given by (3.1), (3.2) and (3.3) and a first-order multi-

plier estimate is used to define W , The necessity of requiring W

to define p. implies that second-order estimates can only be useful in

determining whether t: delete constraints from the active set. The

estimate is callee second-order because

llIk - XtJl = 0 (11x (k) - .,112)

If a constraint is deleted corresponding to (pj < 0 , then (4.3) will

not hold in general. If c = 0 , then (4.5) will hold.

The system (4.7) is consistent because of the definition of p

Note that because it is consistent there is no question of a second-order

estimate analogous to - - the last equation is already satisfied by IW"

22



W: A first-order estimate guaranteeing a first-order feasible

Newton step after deletion.

The multiplier estimates XL and PW are often used in constrained

optimization and are discussed in some detail in Gill and Murray (1979).

Here we note that there is yet another estimate which might be useful

both for EMP and in the context of general constrained optimization.

We denote it VW and define it by

AN =e n+I + WZqz

where Zqz is the solution to QP2 as defined by (3.4). The estimate

vW is the vector of exact multipliers corresponding to the solution of

QP2. Unlike the case with XL or W , if a constraint is deleted

corresponding to a negative component of VW , then (4.5) must hold even

if C j 0 , i.e. the Newton step in the new null space must be first-

order feasible w.r.t. the deleted constraint. This fact follows from

the proof of Theorem 4 in Gill and Murray (1979), where (4.5) is shown

to hold in the context of linear constraints. The proof is applicable to

VW but not PW in the context of nonlinear constraints, since vW is

the exact multiplier vector for a QP with homogeneous constraints.

Notice however that unlike pW , vW is only a first-order estimate.

Using the estimate Xc to define W

Both the estimates Xc and PW will be used to decide when to

delete constraints from the active set, as will be discussed in Section 6.

As explained there, a constraint with a negative component of Xc will not
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necessarily be deleted from the active set, since the multiplier

estimates may not be reliable. However, we also use XC to define W

and there is no good reason to include in W a term with a negative

component of XC Therefore, we define W to be

t

k l 2 (X

where
1

eTX"

and X" is defined by Xi  max(O,(XC)1 )
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5. Properties of Solution of QP Subproblem.

In this section we examine the properties of the solution to QPl.

Initially we assume that all constraints with zero value are included

in the active set and that A has full rank and ZTWZ is positive

definite so that the solution p is given by (3.1), (3.2) and (3.3) and

is unique. We would like p to satisfy (2.1), (2.2) and (2.3) •

Clearly the constraints of QP1 ensure that (2.1) t-ud (2.3) hold. Thus

the only question is whether p is a descent direction for EMP, i.e.

whether (2.2) holds. If all the active constraints have the value zero

then the following applies:

AAT

Theorem 3. Suppose that G = 0 , A has full rank and Z WZ is positive

definite. Then p , the solution of QP1, is a descent direction for

EMP provided it is not zero.

Proof. Since A has full rank and the columns of Y span the range of

of the columns of A , we have py = 0 . Hence p = Zpz and

T pTZTe+

p - Z TWZpZ by (3.3)

Since zTwz is positive definite, en+ Tp must be negative if pz#O,

i.e. p/ 0 " F]

TA
If p = 0 , then by (3.3) Zen =0 and hence AXL=en+I  is

a consistent set of equations, with X C= XL = 4W = XM " Thus either

one of the components of XC is negative or zero, or the first and second

order sufficiency conditions are satisfied and x (k) is a solution
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of problem EMP. If p = 0 and at least one of the multipliers is

negative, then it is necessary to delete a corresponding constraint

from the active set to obtain a descent direction. The procedure

for doing this is described in Section 6. If p = 0 and the smallest

component of XC  is zero, the point x W may or may not be a

solution. In this case special techniques such as described in Gill and

Murray (1977) must be used to determine whether to treat the correspon-

ing constraint as active or not. These will not be discussed any further

here.

In the next three subsections we discuss the actions which it may

be necessary to take to obtain a search direction which satisfies (2.1),

(2.2) and (2.3) when we drop the assumptions that c = 0 , A has full

Trank and Z WZ is positive definite.

5.1 Positive Active Constraints.

In practice it will rarely be the case that c = 0 , so we now drop

this assumption. We note that if we were sufficiently restrictive in

the definition of the active set (e.g. choose only one constraint active)

then we could force this condition to be true. As will be shown in

Section 10,however, it is important for the efficiency of the algorithm

not to be too restrictive in the definition of the active set. This may

appear to negate the significance of Theorem 3, but this is not the case.

Although dropping the assumption certainly means that Theorem 3 no longer

holdssince both Ypy and Zpz could be ascent directions,we can infer
A

that if 1lcil is small (and it approaches zero near the solution), then p

is likely to be a descent direction. Ifhaving solved QPl,it transpires
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T
that en+1 p > 0 , then, provided either Ypy or Zpz is a descent

direction, a suitable descent direction can be chosen as follows:

T
YPy + Y ZPZ  if e n+i yp Y < 0

Y Ypy + Zpz  if e niTZPZ < 0

for same y satisfying 0 < y < 1 If neither component is a descent

direction then a further possibility is to replace Zpz by the solution

of QP2, i.e. Zqz where qZ is given by (3.4) . Provided Zen+l! 0,

the vector ZqZ is a descent direction, and hence so is YYpy + Z for

some Y, O < Y < I .

When ZTen+l= 0 and Yp is an .scent direction, it is necessary

to delete a constraint to obtain a descent direction. One possibility

would be to delete constraint j (say) where c. is the largest componentJ

of c , since it is not strictly necessary to be concerned abQut whether

the resulting search direction has a positive inner product with aj

((2.3) applies only to constraints with value zero). However, clearly

this may lead to a very small step being taken along the search direction

with this constraint being forced immediately back into the active set.

The following result shows that when Ypy is uphill, a constraint can

always be found with a negative multiplier estimate and hence can be

deleted more safely. The result is also useful When ZTe 0 since then
n+l

the fact that Ypy is uphill implies there are too many constraints in

the active set.

Theorem 4. Assume A has full rank and let Ypy be defined by (3.2).
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If en+l Ypy > 0 , then one of the components of XC is negative.

Proof. We know XC is a positive multiple of XL The vector XL

satisfies

A X= YYTe n+ (5.1)

This is a characterization of the least squares solution using the

projector matrix yy (see Stewart(1973, p. 228)). Thus

LTATypy Ten+ TyyTyp

and hence

T^ T-X LC =e >0

Since c > 0 it follows that at least one of the components of XL

and hence XC must be negative. LI

It also follows from the above proof that if en+ TYpy 0 then

either c = 0 (covered by Theorem 3) , or the minimum element of X isC

zero or negative.

It is worth noting that Theorem 4 does nct hold in general if other

multiplier estimates such as XD and pW are substituted for xC *

It follows from Theorem 4 that if Ypy is an ascent direction, we

can delete the constraint corresponding to a negative component of X C

to obtain a first-order feasible descent direction. The procedure for

doing this is described in Section 6.

5.2 Avoiding Rank Deficiency in the Active Contraint Jacobian.

In this section we demonstrate how the active set can always be
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chosen so as to avoid rank deficiency in A .We first consider the

consequences of A being rank deficient. If A is rank deficient and

c j0 , it is not possible in general to satisfy the constraints of

QYl since they may not be compatible. In such circumstances it might

be thought that an adequate compromise would be the least squares solution

AT 
A

to A p -c , but this may not be first-order feasible with respect

to EM? and hence may not be a descent direction for the minimax function

even if it is a descent direction for EM?. Clearly it is desirable to

restrict the number of constraints in the active set so that A has

full rank.

The way this is done is as follows. Given a set of candidates for

the active set, we determine which are to be actually included in the

active set during the QR factorization of A . Assuming the problem is

well-scaled, a reasonable order in which to consider the candidates for

inclusion is given by the size of the constraint values. Therefore we

order the potential columns of A by increasing size of rcj) before

proceeding to do a QR factorization of the matrix by columns without

column pivoting (except where several columns correspond to the same

magnitude of c.) If it transpires during the factorization that any

of the potential columns of A is linearly dependent on those already

included, then the corresponding constraint is not included in the active

set. Clearly such a process results in a matrix A that has full column

rank.

An example which illustrates this procedure is the following.

Suppose the initial candidates for the active set are
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0 1 1 0.5 0

10 0 0 0.5 1
C = 10-3 and A b 0o0 0

10 - 2  1 1 1 1

Then the first and third constraints are selected for the active set,

and the second and fourth are ignored.

We must now show that omitting any constraint, say cr(x) , from

the active set to avoid rank deficiency in A does not cause (2.3) to

be violated. Strictly speaking, we need not be concerned with constraints

for which cr(x) > 0, but for the moment we will not assume Cr (x) = 0

since the following also serves to illustrate why we put potentially

active constraints in increasing order.

Let a be the gradient of c . We haver r

5

a = wi a i  (5.2)
i=l

for some index s and scalars wi , i = 1,...,s . Since the

constraints were ordered we also have

cr > cs > Cs >. . . _c (5.3)

It follows from (3.2) and (5.2) that

5
arp = - wic i  (5.i)

i=l
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Since we have no a priori information about how the sizes of the (w1]

would change if the columns were ordered differently, we have by putting

the constraints in increasing order attempted to prevent I ar TpA from

being large and in particular to prevent a Tp from being a large

negative number. Ordering the constraints also ensures that the omitted

constraint cr have as large a value as -possible, and these two facts

combine to make it as unlikely as possible that constraint r will

prevent a significant step from being taken along p . It follows from

(5.3) and (5.4) that if c r = 0, then a r Ty = 0 and hence (2.3) is

satisfied. However,if it is necessary to delete a further constraint

from the active set as described in Section 6, then (2.3) may no longer

hold. This difficulty is circumvented by allowing a zero step to be

taken along p (see Section 8) and then reconsidering the choice of

active set in the next iteration.

5.3 Projected Hessian not Positive Definite.

if Z TWZ is not positive definite, it makes no sense to use the

solution of (3.3), even if it exists, to define the direction of search.

Such a direction is a step to a stationary point which is not a minimum

of the quadratic formi on the subs-pace defined by the constraints and may

even be a maximum. It also makes no sense to reduce the number of active

constraints (the projected Hessian will still be indefinite) since one

means of ensuring that the projected Hessian is positive definite is to

increase the number of active constraints. An alternative definition of

the search direction which is satisfactory is to utilize the modified

Cholesky algorithm of Gill and Murray (1974).
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The following numerically stable matrix factorization is computed:

Z TWZ + E = LDLT

The matrix E is a non-negative diagonal matrix large enough to make

TZ WZ + E numerically positive definite. The modified Newton direction
A

in the null space of A is then defined as Zq where

T T
LDL qz="Ze n+l (5.5)

Recently several more complicated methods have been suggested for handling

indefinite Hessians ; see Fletcher and Freeman (1977), and More and Sorenson

(1979). All of these, including the Gill and Murray algorithm, provide

ways of obtaining directions of negative curvature. As will be explained

shortly, however,these are not so useful in the context of nonlinear

constraints;our main concern here is simply to obtain a reasonable descent

direction.

Like the Newton direction Zqz in the positive definite case, the

vector ZQZ is a descent direction provided that ZTe n+1  0 . If

ZTen+l 0 and en+l TYpy < 0 we can simply set p = Ypy; if

Z en 1 = 0 and e TYpy > 0 we have already explained that a constraintn~~l n+l

may be deleted. Similarly if en+iT Yp = 0 , but a component of XC isC s

negative, a constraint may be deleted.

If Z TWZ is not positive semi-definite and en+l Typy = 0 ,

T (k)
Z en+l = 0 and XC > 0 , then the point x is a constrained saddle

point (oreven a maximum). It is desirable to compute a feasible arc of

negative curvature with respect to zTwz , which must exist. For the

case of linearly constrained minimization of a differentiable function,

32



Gill'and Murray (1974) have shown how to compute a vector of negative

curvature using the modified Cholesky factorization. However, it is not

possible in general to compute such an arc for the nonlinearly constrained

case given only W -- it is necessary to know all the individual constraint

Hessians. Such a computation would hence require an unreasonable amount

of storage as well as computational effort. We therefore suggest the

following. If c > 0 for some J, delete the J-th active constraint

and avoid, or at least postpone, the problem. If c = 0 , compute the

direction of negative curvature assuming the constraints are linear, which

is thus feasible to first order, and try stepping along it. If the minimax

function is lower at the new point,then take this as x k+l ) . Otherwise

an alternative is to try to obtain a lower point using a function-comparison

method such as described in Swann (1972). There is no reasonable procedure

which is guaranteed to work in this situation. However, it should be noted

that such a situation is unlikely to occur since the basic modified Newton

iteration of solving successive quadratic programs seeks to avoid saddle

points and maxima.

6. Deleting Constraints from the Active Set.

In Section 5 we explained that when ZTen+1 = 0 and a multiplier is

negative, it is necessary to delete a constraint from the active set in

order to obtain a first-order feasible descent direction. It is well known

in the context of constrained optimization that it is ill-advised

to wait until ZT e 1  is zero or very close to zero before deleting a

constraint corresponding to a negative multiplier estimate, since doing so

is solving the wrong equality-constrained subproblem with unnecessary
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accuracy (minimizing on a manifold). It is also well known that it is

even more ill-advised to delete a constraint too early, when the multi-

plier estimates are not yet reliable, since this may cause the constraint

to be repeatedly added to and dropped from the active set. Gill and

Murray (1979) suggest computing both X L and p.when possible, never

considering deleting a constraint unless the estimates have the same sign

and agree within a certain tolerance. Here we use X C instead of X L

Notice that XC= N when Z e n. 1  0.- A further possibility is to

insist that the following hold before deleting a constraint:

1Z T en+111 < 8 min (1, minn (XC)i

where 8< 1 is a constant, say 6 = In T effect, this test ensures

that the higher the uncertainty that a multiplier is negative, the greater

the accuracy to which the minimum is approximated on the manifold.

In Section 5.1 we also pointed out a further situation in which we

delete a constraint. This is when e n 1 TYp Y> 0 , which means (as

shownmin Theorem 4.) that (X)C <a0 (and c >o0) for some j . A

constraint is always deleted in this situation since this is a clear

indication that there are too many constraints in the active set.

In the rest of this section we discuss what search direction p to

choose after deleting constraint j with (X ) < 0 .Define A, Z and

z by (4i-1). Define c to be c with cji deleted. Since A corresponds

to the new active set we wish p to satisfy

AT p c (6.1)
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corresponding to (2.1), and also pnrz < 0 , i.e. (2.2). If ej 0

then we must have
aj p > 0 (6.2)

to satisfy (2.3), but as explained in Section 5.1, this is desirable even

if cj > 0.

As we noted in Section 4, the steepest descent step Zs- in the

null space of the new set of constraints, given by (4.2), must satisfy

(6.2), but the Newton step given by (4.4) may not satisfy (6.2) . A step

satisfying (6.2) which is preferable to the steepest de , - ftep is a

combination of the Newton step in the null space of A , i.e. ZqZ , and

the steepest descent step in the new direction permitted by deleting the

constraint.

Theorem 5. Assume A has full rank.

Suppose (X) < 0 . Define A, Z and z as in (3.1). Let r be

defined by

- zTen

where qz is defined by (5.5). Then p = Zr z satisfies (6.1), (2.2)

and (6.3).

Proof. It is trivial to see that (6.1) holds. We show that (2.2) is

satisfied, i.e. p is a descent direction for EMP , as follows:
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rT

en+Zr =en 1  z z]

T T T
en+l Zqz - en+l zz e n+1

qzTLDL Tqz T TSzzn+

The first term is zero or negative. The second term is negative since

otherwise ZZ Ten I = ZZTe n+ and hence AX = AxL , where XL is

AL with (A ) deleted, which implies (XL)j 0 , a contradiction.

Thus Zri is a descent direction. The proof that (6.2) holds followsz
that of Theorem 1, Gill and Murray (U979). We have

ajr = aj [Z z] r=[ a z] r

^T T= -azz en+1

^T-

Note that the fact that A has fall rank implies that a Z o and hence

^TT
a z j 0 . Multiplying both sides of (5.1) by z we have

T^
(L i z a j =z e n+I

so

^a rz - (XL) (a Z) > o [
jZ L

Note that there is no guarantee that the corresponding range space

step Ypi to the modified set of constraints satisfies either (2.2 ) or
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(6.2). This step is defined by

A Yp- -C

where c is c with c deleted and the orthogonal columns of Y

span the range of A . However, since Zri satisfies (2.2) and (6.2)

with strict inequality, so does YYp i- Zr- for small enough Y

Although Zri is guaranteed to satisfy the required properties

(6.1), (2.2) and (6.2), the Newton step Zqj may be preferable if it

satisfies (6.2). In fact, the step Zpi , defined by

ZWZp= - Z (en+1 + WYp) ,

may be preferable to either, but this is not guaranteed to even be a

descent direction. We recommend computing Zqj and performing the

appropriate inner product to check whether it is a feasible descent

direction, falling back on yYpi + Zri if it is not, and substituting

Zqj for Zrj if it is. This may be done even if (pW) > 0 , which may

T
be the case if we are -4leting a constraint when en4 i1 ypy> 0 ,

since Theorem 4 does not hold with pW substituted for XL (even if W

is assumed to be positive definite). Although when exact Hessians are

available, it is normally inadvisable to delete a constraint and take a

Newton step when (W)j > 0 , in this case it is desirable to delete a

constraint and the only question is what step to take.

In all of the above,when a constraint is deleted from the active set

it is not necessary to recompute the factorizations of A and ZWZ from

scratch. They can be obtained by updating the factorizations already
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available, as described in Gill, Golub, Murray and Saunders (1974)

and Gill and Murray (1974).

Note that we have been able to always obtain a satisfactory choice

for p by deleting only one constraint with a negative multiplier

estimate.

7. Quasi-Newton and Finite Difference Approximations to the Hessian.

It may be that the Hessians (V2fiJ are unavailable either because

they are too expensive to evaluate or too difficult to determine.

Here we outline the various alternative ways to approximate W

Recall from Section 1.1 that

W = 01

0)0

so that when analytical Hessians are used a matrix of order n is stored.

The two basic alternatives are using a finite difference approximation or

a quasi-Newton approximation.

A finite difference approximation to W , unlike a quasi-Newton

approximation, requires extra gradient evaluations to be done at each

iteration. However, it is important to note that extra gradient evaluations

of only the t active functions are required, where t may be significantly

less than m , the number of functions which must be evaluated at each

iteration. Furthermore, since the matrix W is not explicitly required

to compute p we can form a direct finite difference approximation to

WZ by differencing the gradient of the Lagrangian function along the

columns of Z . It is also necessary to difference the gradients along

Ypy to obtain an approximation to WYpy (for computing PZ and pW) .
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Thus the t active gradients must each be evaluated only n - t + 2

times, which may be considerably less than the n + 1 required to

approximate W
When a quasi-Newton method is used, two approaches are possible.

One is to maintain an approximation Bto the full matrix W. The

problem with this approach is that Wmay have negative eigenvalues

at the solution and so a hereditary positive definite update may not be

appropriate. Nonetheless, Powell (1977) has showen that it is possible to

maintain a positive definite approximation and still obtain superlinear

local convergence. In the case of linearly constrained optimization, Gill

and MaIrray (1974) have suggested maintaining a quasi-Newton approximation

to the projected Hessian Z WZ , a strategy with two major advantages:

the matrix to be stored has lower dimension, and because the projected

Hessian is positive definite at the solution a positive definite update

is appropriate. Murray and Wright (1978) have suggested and numerically

investigated a number of variants of a similar approach for problem NCP.

An additional difficulty with nonlinear constraints is that the matrix Z

is changing at every iteration as well as the matrix W . We note that

when this technique is used the vector p Z (as opposed to qZ) and the

second order multiplier estimate pWare not made available. However, even if

the full matrix is approximated these vectors are likely to be unreliable

since the quasi-Newton approximation is not reliable in the sense that

Bp is rarely a close approximation to Wp . When a constraint is

deleted from the active set, the approximation may-be augmented as

follows:
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Z~~~ B [ZBZ 1

The resulting direction Zqj (substituting zBZ for Twz) is then

identical to the direction Zr- described earlier.

z

The choice between exact Hessians, finite difference of gradients,

and a quasi-Newton method will depend on various circumstances. For further

details for both finite difference strategies and quasi-Newton strategies

the reader is referred to Murray and Wright (1978), where the same topic

is discussed with regard to algorithms for solving problem NCP.

One of the prime applications of the minimax algorithm is to data

fitting problems in the f norm (see Section 11). These problems

typically have a large number of functions fi (observations), but a

relatively small number of variables. Furthermore if the functions are

not too highly nonlinear the number of active constraints at the solution

may be close to n+l (it would be exactly n+l if the problem were linear).

Thus it may often be that t << m and n+l-t << n, exactly the situation

where the finite difference scheme is most efficient. Since the finite

difference scheme will normally produce a better direction of search

at each iteration than a quasi-Newton method and also has a higher

rate of convergence, it will normally take significantly fewer

iterations to reach the solution. Thus the additional work at

each iteration may result in a substantial saving overall.
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It is worth noting that a feasible point algorithm for problem

NCP (such as the barrier trajectory method described in Wright (1976))

may have to evaluate all m functions for each column of Z when

using a finite difference scheme. The reason for this is to ascertain

that each evaluation point is feasible and hence the t active gradients

are well-defined. This consideration does not arise with the minimax

problem.

8. Determining the Steplength.
(k)

In the previous sections we have shown how, given x , we may

obtain a satisfactory direction of search j which is a descent direction

for the minimax function. We now discuss how to determine a steplength

a to take along 5 . Although a simple steplength algorithm may be all

that is required to meet convergence criteria for the overall algorithm,

from the point of view of efficiency it is important that the step

achieve as large a reduction in the value of the function FM as possible,

given a certain limit on the effort to be expended. Since FM is not

differentiable everywhere a steplength algorithm intended for differen-

tiable functions will not be efficient. We therefore use the steplength

algorithm which is described at some length in Murray and Overton (1979).

This algorithm is designed specifically for the minimax problem and

related problems. It includes a facility for varying the limit on

the effort to be expended, producing anything from an algorithm which

normally takes only a single function evaluation to one which does

an exact linear search.
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The steplength algorithm requires an initial guess at a , say

0 , where FM is to be evaluated first. We set o0 to either one, or

the estimated step to the nearest inactive constraint using the linear

approximations at x (k) , if this is less than one. Thus

CI min (1, of (8.1)
ci

where 0 T aip <0 and i not in active set.
aip

It is possible that cO 0 and hence the algorithm must allow for this

possibility. In this case the appropriate inactive constraint must be

added to the active set and the iteration is repeated.

9. Flowchart of the Algorithm.

We summarize the basic iteration of the algorithm in the flowchart

in Figure 2. For s_mplicity we have omitted any tolerances from the flow-

chart though clearly in practice these must be included. The parameters

yl and y2 are optional. For the results presented in Section i,

Y1 is set to 1 when possible but y2 is always set to zero. The

latter is done because near a saddle point or after deleting a constraint

a poor range space direction can swamp a good null space direction if

Y2 > 0 . The notation S is used to mean either W or a finite-

difference or quasi-Newton approximation to W
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10. Selecting the Active Set.

The success of the algorithm we have described depends on being

able to make a reasonable choice of the active Bet at each iteration.

If constraints are required to have very small magnitude to be included

in the active set, then the iterates will follow the constraint bounda-

ries very closely and the convergence will be slow. Conversely if too

many constraints are selected as active the directions of search may be

poor. In this section we describe an active set strategy that has been

most successful for the numerical experiments we have carried out. It

is likely, however, that this strategy will be modified in the future

after more extensive numerical experience.

Clearly one feature required of the active set strategy is that,

as the iterates approach x , it should become successively more difficult

for constraints with magnitudes significantly greater than zero to be

included. One way to accomplish this is to have the strategy depend on

a parameter which is reduced as the solution is approached or if any

difficulties arise. We found that reducing a parameter in this way was

not satisfactory since it can easily happen that the parameter is reduced

too much, making it impossible to ever include all the correct active

constraints. Instead we take the following approach. There is always at

least one constraint active with value identically zero so the first

decision is whether to include a second constraint. If this is done the

decision of whether to include others is tied to the magnitude of the

second constraint. Thus the required objective will be achieved, pro-

vided that the first decision is made correctly so that any second active
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constraint approaches zero as the iterates approach the solution.

Let us order the constraints so that 0 = cI < c2 < ... < c ,

with the ffi) and fvi) correspondingly ordered. We include in the

active set all constraints with magnitude less than a very small tolerance,

any no. In order to compare the larger constraint magnitudes we must

scale them in some way. For problem I P (see Section 11) we define the

scaled values by ci i since the value of F can only be very

small if all the constraints values are very small. For problem MMP

the value of FM could be zero or negative so we define the scaled values

by i = i . Scaling the values is necessary since two functions
l+1f 11+1f 2

with values 999 and 1000 are likely to both be active if one is, while

this is not true of functions with values 1 and 2 . Notice that the

existence of any functions in problem MMP with negative values much less

than FM  does not affect the definition of c. , which is appropriateM 1

since it does not affect the solution.

If only one constraint is active, then 11vl(i)U = 0 . Therefore

the decision of whether to include a second active constraint c2  is made

as follows. If 11v 11 is small, say 1vl1l < x, , then c2  is included

only if c2 < otliv 1l12  , where x2 > 1 , a test which can be justified

by Taylor expansions around the solution. If vl X, , then c2

is included only if E2 < 3 , where 0 < K3 <

It remains to test the other constraint values against c2  . We

include ci if ci_1  is included and ci <K 3 and ci < (E-)K14

i - 3,-,..., min(m,ntl) , where 0 < K1 < 1 • Thus, for example, if
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x= 0.5 ,c3 is included if c. is included, E 2 106 and
42

053 = 10- but not if c2 = 0.1 and c 3= 0.5. Note that we always

have E 2 < 1

We found that it was also important not to include a constraint

in the active set if it was included but subsequently deleted in the

previous iteration. It was also helpful to include a constraint

requiring only that 61< X3if the previous line search chose a

step to a point of discontinuity involving the corresponding function.

Sometimes some constraints are much smaller than others which

should also be in the active set (for example if some of the functions

are linear). In such a situation it is not appropriate to compare

all the constraints with c 2 The remedy is to let the first constraint

with value significantly greater than the machine precision play the

role of c2  However, then v1  must be replaced by a projected

gradient Z TV, in the tests, and the factorization of A and the

accumulation of the transformations which form Z must be performed

as the active set selection proceeds. We have not yet implemented

this modification.

Our current active set strategy is the above with KOset to

the square root of the machine precision, K, 0.1 , x2 =25,

=0.25 for I P X3K 0.1 for MMP, and x 0.5
33
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11. The Special Case of the Least I Norm Problem.

In this section we consider problem IMP , defined in Section 1.

Problem I P is an important special case of MMP. Note that 1,P must

have a solution, whereas MMP may not. Clearly it is preferable to treat

IMP in a special manner rather than just treat Ifi as max (-fi fi

If we eliminate the possibility that F is zero at the solution, i.e.

all the (fi] are zero at the solution, then we can observe that only

one of each pair of constraints fi(:) > 0 Xn+l + fi(i) > 0 ,

can be active at the solution. Thus defining .= sgn(fi()) for any

it is straightforward to handle I.P by using the algorithm described

for MMP, replacing fi by aif i everywhere. The only places where it is

necessary to consider the inactive constraints fc. = xn+ + ifi} are in

the determination of the initial guess at the steplength a and in

the steplength algorithm itself. Thus a must be set to

0
min

where or' is defined by (8.1) and is given byaa

ao6 = min [- c- I Vc.P < 0, i = 1,2,...,m]

VO T T 1ci%

The changes which must be made to the steplength algorithm are indicated

in Murray and Overton (1979).

If F is zero at the solution there is still no difficulty with this

approach provided that m > n+l , since then of the 2m constraints active

for the equivalent problem corresponding to I.P , at most n+l can be
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included in the active set to obtain a full rank active constraint

Jacobian. Thus including in the active set at most one constraint

of each pair causes no difficulty. Such a situation is a highly

degenerate one but the point is that if the situation does arise the

algorithm will take care of it efficiently. The usual source of

I P is data fitting problems so we expect almost always to have

m > n+l . However, if it does happen that we wish to solve I P with

m < n then the above technique may be very inefficient since both

constraints in a pair of constraints active at the solution cannot be

put into the active set. Instead of making a complicated modification

to take care of this unlikely possibility, we recommend writing the

jroblem explicitly in the form MMP and solving this directly.

It is straightforward to generalize the above to an algorithm which

can be used to minimize a more general function

F GM W)= max fmax Ifr i)I, max (i)
1 < i < m1r ml+ I < i < m

assuming m1 > n+l if mI j 0 . Since coping with the general case

introduces very little extra overhead our implementation of the algorithm

handles this wider class of functions. In this way one algorithm takes

care of both MMP (ml= O) and IMP (mi =m).

11.1 The Haar Condition.

We comment here on the meaning of the Haar condition since this is

usually discussed in the context of !. approximation. Let us first

consider the case that the fi are linear. The Haar condition is said
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to hold for these functions if every n X n submatrix of V is non-

singular, where V is the n X m matrix whose columns are the gradients

of the f . Consider problem EMP which is now a linear programming

problem. A necessary condition for x to be a solution to EMP is that

** *
V and o (since e =) . Thus the requirement that the

Haar condition holds implies that there be at least n+l active con-

straints at the solution with none of the multipliers equal to zero,

and hence that the solution is unique. Most algorithms which solve the

linear minimax problem do so by solving a linear program related to ELP.

Thus whether or not the Haar condition holds is quite

irrelevant to the difficulty of solving I P , since zero multipliers

cause no real difficulty in solving linear programs. Degeneracy, which

occurs when the matrix A is rank deficient and can in theory cause

problems in solving a linear program, can occur whether or not the Haar

condition holds. The significance of the Haar condition is that if it

does not hold the solution may not be unique, and hence one may be

interested in a "strict" solution to the data approximation problem which

is unique, i.e. that solution of I P which minimizes

max If(i)l I fi inactive at xJ

(see Rice (1%9) and Brannigan (1978)).

The Haar condition is much stronger than necessary to ensure unique-

ness. A slightly more reasonable condition is that there be n+l constraints

with nonzero multipliers active at the solution of IMP (see Jittorntrum

and Osborne (1979, P.3) for an example showing that this condition is
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still stronger than necessary to ensure uniqueness). This condition

cannot be checked without solving IMP but solving I P is actually

much easier to do than checking whether the Haar conditon holds.

Let us now consider the nonlinear case. The Haar condition is then

said to hold at a point i if every subset of gradients of functiois

with zero constraint values at i is linearly independent. As in the

linear case we are really only concerned with the situation at x - Thus

the Haar condition holds at 1 if every n X n submatrix of V has full

rank. Again it follows that if the Haar conditon holds there must be

n+l constraints with nonzero multipliers active at i . This condition

is however a much more unreasonable one than in the linear case. There

must always exist a solution to the linear problem where n+l constraints

are active, but the nonlinear problem can have a unique solution with

anything from 1 to n+l constraints active. If the Haar condition does

hold at x then Z is null and the problem can be adequately solved by

a method using only first-order information. Thus our algorithm has been

designed with the assumption that the Haar condition often does not hold.

When I P arises from data fitting problems it may sometimes be the case

that the Haar condition can be expected to hold at x . However, the

only way to ascertain whether the Haar condition does indeed hold is to

solve the problem. Since we cannot be sure at the outset it is clearly

uneatisfactory to be using an algorithm which uses first order-information

only and hence may indicate that the Haar condition does not hold by

extremely poor performance. For many data fitting problems the number of

active constraints at the solution may be close to n+l , and as pointed
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out in Section 7 this means using a finite difference approximation to

ZTWZ, which has order n+l-t , may be quite inexpensive.

Crome (1972) discusses in a broader setting a weaker condition than

the Haar condition at x called strong uniqueness which still ensures

that a particular algorithm using only first-order information converges

quadratically. Strong uniqueness implies that n+l constraints are

active at i but is weaker than the Haar condition since it permits active

constraints with zero multipliers. Jittorntrum and Osborne (1979) discuss

a still weaker condition which arises from examining the curvature in the

null space of the active constraint Jacobian with gradients corresponding

to zero multipliers deleted. This weaker condition also ensures that a

first-order method has quadratic convergence. The sufficient conditions

for a minimum given in Section 1.1 are much weaker than any of these

conditions since they permit t(x) to be less than n+l , in which case

an efficient algorithm must approximate ZTWZ . These conditions could

themselves be weakened if curvature corresponding to zero multipliers were

examined.
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12. Relationships to Other Algorithms

A number of other algorithms have been proposed to solve the nonlinear

minimax problem. It was not until recently, however, that special algorithms

for lvtP which make use of second-order information appeared. Han (1977b, 1978a,

1978b) suggests methods which solve a sequence of quadratic programming prob-

lems using a quasi-Newton approximation to W . These will discussed further

shortly. Watson (1979) and Hald and Madsen (1978) proposed two-stage methods

which begin by using the first-order methods of Anderson and Osborne (1977)

and Madsen (1975), respectively, and switch to solving a system of nonlinear

equations using the second-order information in W when it is thought that

the active set has been identified. The system is of order n+l+t , i.e.,

the multipliers and variables are all obtained at once. Recall that for

problem Z.P , t is often close to n+1 so the systems that Watson and

Hald and Madsen solve may be much larger than the ones we solve. The direc-

tion of search obtained is not necessarily a descent direction for the mini-

max function but only for the residual of the nonlinear system. A method

related to the second stage of these methods was given by Hettich (1976).

Conn (1979) presents a method which is derived from the point of view of

a nondifferentiable penalty function. It is related to the algorithm of

Charalambous and Conn (1978) but uses second-order information. We discuss

this method further below. Other methods which use second-order information

and are related to Han's method are disuessed by Charalambous and Moharram

(1978,1979) and Wierzbicki (1978).
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Our algorithm is most closely related to the methods of Han (1977b,

1978a) and Conn (1979), so we discuss these further here. The primary

difference between our method and Han's method is that we attempt to iden-

tify the active set at each iteration and then solve an equality-con-

strained quadratic program (EQP), modifying the resulting direction of

search and the active set if necessary, while Han solves an inequality-

constrained quadratic program (IQP), thus implicitly selecting the active

set associated with the solution of IQP. The IQP has the form:

m Tw + en 1TP

subject to ATp > -c

where c and A are the vector and matrix of all the constraints and

their gradients.

The dichotomy of whether to solve EQP or IQP occurs at all levels

of constrained optimization. Marray (1969a) considered solving the IQP

associated with his algorithm for NCP but found an EQP strategy more

successful. He also considered a strategy of partially solving IQP.

The same question arises in linearly constrained optimization. Brayton

and Cullum (1977) report some results which indicate that for the case

of minimization subject to bounds on the variables (the simplest possible

constrained optimization problem), solving IQP is not in general more

efficient than solving EQP.
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The motivation for solving IQP is that it makes the fullest use

of the information at x ) . Furthermore it simplifies the description

of the algorithm and for problem MMP makes it straightforward to get

a descent direction since positive constraints are not selected for an

active set except in the process of solving IQP. Clearly one disadvan-

tage of solving IQP is that it is more work than solving EQP. If m >> n

and the function evaluations are not too expensive then an algorithm

which solves IQP may be extremely inefficient compared to one which solves

EQP. However this is not the main objection to solving IQP. The main

motivation for solving EQP rather than IQP is that the linear approximations

to the constraints (for NCP and MMP) and the quadratic approximation to the

Lagrangian function are unreliable away from the current point x

The process of solving IQP involves successively making decisions about

which constraints to include in the active set at points which may be quite

(k) (W)
far from x , based on the approximations at x Thus the final point

at which this decision is made, the solution of IQP, may be the result of

choosing an active set which has no meaning whatsoever. If x ( is so

close to x that the approximations are satisfactory then IQP may still

have no advantage over EQP since they may well have the same solution.

Most of the differences between Han's method and ours result from

the difference between IP and EQP (he uses the multipliers from the

old IQP and requires that the full Hessian V is positive definite,

T
while we use N to define Q and require only that Z WZ be

positive definite). He discusses only quasi-Newton methods while we

consider also a finite difference strategy. Finally, although his

line search is used to obtain a reduction in FM  it is not designed

specially for nondifferentiable functions as ours is.
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Han (1978b) presents another algorithm for MMP which is related tc

the one discussed above. It is quite different however in that the line

search takes place in the (n+l) dimensional space. The line search obtains

a reduction in the function

m

8(a) = Xn+l+ apn+l+ I x(fi( - (xn pn+l),)

instead of FM(i + p ). The motivation given for this is that e takes

into account some inactive functions while FM gives bias completely to

the active functions. However, our view is that inactive functions should

be considered in the line search only if they are likely to become active

along the line, and this is exactly what our special line search to reduce

the minimax function does.

The problem with reducing 0 is that it relies too much on the

value of Pn+l which gives only a linear approximation to the active

(kc)
functions at x It is easy to construct examples where minimizing

0 along the line results in a much smaller reduction of FM than is

possible. We feel that using 0 instead of FM in the line search is

discarding one of the most useful tools available to solve MMP.

The analysis in Han (1978b) is concerned with the fact that the

quadratic form of IQP is not positive definite in Rn l . Our view how-

ever is that the only matrix whose positive definiteness should be a

concern is the projected Hessian, and this is the same in Rn and Rn+l

since 2T = zTwz . Recall that we expect the dimension of this matrix

to be much smaller than that of W .
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We now turn our attention to the algorithm of Corn (1979), which is

more closely related to ours in a number of ways. Like us, Conn attempts

to identify the active set and solves a related EQP at every iteration.

However, unlike ours, his search direction does not include a component

in the space spanned by Y unless there is reason to believe that x(k)

is near a stationary point. Furthermore he uses the Hessian of the

Lagrangian function to give the quadratic form of the QP only if x(k) is

thought to be near a stationary point. Otherwise he uses instead the

Hessians of one of the active functions at each iteration. His reason for

this is that the Lagrange multipliers may be highly inaccurate away from

a stationary point. Although this is certainly true, our view is that

using the Hessian of only one function is equivalent to using a multiplier

estimate with only one component equal to one and the rest zero, and that

this is no less arbitrary than using any other vector of nonnegative

components which sum to one to define W . As we explained at the end

of Section 4, our algorithm always uses such a vector to define W

Our approach eliminates any need to decide when to switch from one strategy

to another, something which it is difficult to do since it is hard to

tell how accurate multiplier estimates are. Furthermore using different

Hessians at different iterations makes a quasi-Newton approach difficult.

There are many other differences between Conn's algorithm and ours

which follow because of the fact that his approach is via a nondifferent-

iable penalty function while ours is via a Langrangian function. For

example, he does not factorize the matrix A as we do, but instead factor-

izes a matrix M which is -V less one column v corresponding to the

one function whose Hessian is to be computed. This matrix factorization
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is then updated to give a factorization of the matrix resulting from adding

vto each column of M *It can be shown that this approach restricts

j~ to the same null space as our algorithm. Muiltiplier estimates can also

be computed by this approach but they will not be the same as eitherXL

or since they give bias to function j . Conn shows how to take

advantage of any explicitly linear functions in his algorithm.

In a way our algorithm treads the middle ground between Han' s method

(k)
and Conn' s method. Han relies an the approximation at x so completely

that he solves the IQP. Conn distrusts the multiplier estimates and does

(k)
not use them unless x is near a stationary point. We believe that

some multiplier estimates are better than no estimates at all, but we solve

the QP 'which relies as little on the approximations as possible.
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13. Convergence Properties.

In the limit our method becomes a projected Lagrangian method for

NCP applied to the special case MMP and so we can make use of the known

asymptotic local convergence results for these methods. Robinson (1974)

showed that the method of Wilson (1963) has a quadratic rate of local

convergence if analytical Hessians of the objective function and con-

straints are used, provided that the functions are sufficiently smooth

and there are no zero multipliers at the solution. This last condition

also ensures that ultimately solving the IQP and the EQP are the same,

so the only difference between our method and Wilson's in the limit is

the fact that we use the first-order multiplier estimates at the new

point (instead of the multipliers of the old QP) to define W . It is

shown by Fletcher (197.) that using the first-order multiplier estimates

does not inhibit the quadratic convergence of a projected Lagrangian

method.

Using finite-difference approximations to the Hessian or projected

Hessian is well known to have essentially the same final rate of con-

vergence (to machine precision) as using analytical Hessians. A super-

linear rate of convergence for a projected Lagrangian method using a par-

ticular quasi-Newton approximation to the full matrix W has been shown

by Powell (1977).

1i. Computational Results.

In this section we illustrate the usefulness of the algorithm by

presenting some numerical results for the case where finite-difference

approximations to the Hessian of the Lagrangian function are used.
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Six problems are selected from the literature. We solve the first

four as problems of the type I P and the last two as problems of

the type MMP. The problems and their solutions are as follows:

Problem 1: Bard (1970).

f (x) = y- x - J1,2,...,15

vJx,+ wJx 3

where uj j, vj 16-J wj =min(u,) and the vector y

is given in Table 1.

Starting Point: x0  (1,1,)T

Problem 2: Kowalik and Osborne (1968).

x(u 2~j~~x)=yj u ++x~ujx
f(x) y- 2j =1,2,...,ll

u2 + x 3J x.4

where vectors y and u are given in Table 2.

Starting Point: x0 = (0. 2 5 ,0. 3 9 ,O.41 5 ,0.3 9 )T

TABLE 1 TABLE 2

i yi i Yi ui

1 0.l4 1 o.1957 4.0000
2 o.18 2 o.1947 2.0000
3 0-22 3 0.1735 1.0000

0.25 4 o.16oo 0.5000
5 0.29 5 o.o814 0.2500
6 o.32 6 o.o627 o.167o
7 0.35 7 o.o456 0.1250
8 0.39 8 0.0 42 0.1000
9 0.37 9 0.0323 0.0833

10 0.58 10 0.0235 o.O714
U 0.73 11 o.o246 0.0625
12 0.96
13 1.34
114 2.10
15 4.39
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Problem 3: madsen (:L975).

1f (x) x12+ 2+ xlX2

f3(x) = cos x 2

starting Point: xo = (3,1)1

Problem 4: El-Attar et al. (1979) # 2.

f1(x) = x 2 2. W =-

[x) (z) z 2+ X22+ (x5- 2)2 f5 (X) = 2X,3+ 6x2
2  2 (5x3- x1+ 1)2

f 3 (x) =y 32+ 3- 1 r6 (x) = z2_ 9)3

starting Point: xo = (1,1,,) T

Problem 5: Charalambous and Bandler (1976) # 1.

f 1(x ) 2- + _

f3(x) = 2 exp(-x+ X2)

Starting Pointz xO  (1,..1)T
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Problem 6: Rosen and Suzuki (1965).

f~)~ 2+x 2+ 2 x 2_12 1l2+ +X4 2_5x- 5X2 -21x, -7x4

f (x) = fl(x) - 2(- x12 - '22- x,2_ x42_ xl+ x. -  748)

f3(x) = fl(x) - lO(- X,2_ 2x2  32 _ 2xc2 + + 1)o

4(x) = fl(x) - x(- 2x 2_ 2_ x3
2 _ 2x,+ x2+ X4+ 5)

Starting Point: )T

(This is a problem originally of the type NCP transformed to type MMP

by the introduction of the penalty parameter 10, which is always possible

if the parameter is large enough, as several authors have pointed out).

Solutions found:

Problem I, (I P):

OF (x) = 0.77601 with x = (0.17757, - 0.9295, 5.30796 )T

(This is a different local minimum from that found by Watson (1979)).

Problem 2,(1 P):

F (x) = 0.0080844 with x= (0.18463, 0.10521, o.oli96, 0 .1 1179 )T
.

Problem 3. ( P):

F(x) = 0.61643 with x= (- 0.45330, 0.90659)T
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Problem ii, Ct PP):

F () - 3.59972 with x - (0.32826, 0.00000, 0.13132)
T

Problem 5, ibJP

FM(X) 1.95222 ith xu (1.139o, 0 .89956 )T

Problem 6, (,%?e):

F () = - 4.0000 with x - (0.000oo, 1.00000, 2.00000,- i.OOOO).

The results are summarized in Table 3. The termination conditions

1-6 -6 -6
requires were that Ic| 2 < 10, AZTen+ 1 12 < ]0  , ZTWZ numerically

positive semi-definite and AC > 0 . The line search accuracy parameter n

was set to 0.9 (see Murray and Overton (1979)for the definition of this 
parameter).

Several other choices of n were tried, but n = 0.9 was the most

efficient, indicating as expected that a slack line search is desirable

at least on these problems. The machine used was an IBM 370/168 in

double precision, i.e., with 16 decimal digits of accuracy. The column

headed NI reports the number of iterations required, which is also 
the

number of times the Hessian was approximated. The column headed NF

gives the number of function evaluations (not including gradient evaluations

for the Hessian approximation).
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TABLE 3

Problem n m n+l-t NI NF

1 (Bard) 3 15 1 11 U
2 (Kowalik and Osborne) 4 11 0 ii 14
3 (Madsen) 2 3 1 13 19
4 (El-Attar et al,#2) 3 6 2 7 8

5 (Charalambous and Bandler,#l) 2 3 1 6 6
6 (Rosen and Suzuki) 4 4 2 7 10

The results demonstrate that at least on a limited set of test

problems the algorithm fulfills some of its promise. Final quadratic

convergence was observed in all cases. The algorithm has been tested

on a wider set of problems and results obtained for a variety of choices

of the optional parameters. It was clear from these more extensive results

that more work needs to be done in developing the active set selection

strategy. These results must therefore be regarded as preliminary.

15. Concluding Remarks.

We conclude with emphasizing the importance of solving MMP by a

special algorithm such as the one presented here and not just applying

an algorithm for the general nonlinear programing problem NCP to the

equivalent problem EMP. The primary simplification of the minimax problem

over the nonlinear programing problem is that a natural merit function

is available to measure progress towards the solution. To put this

another way, it is always possible to reduce Fm in the line search and
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obtain a new feasible point for problem EMP. Several results in this

chapter followed from the availability of the natural merit function.

In particular, consider Theorem 4 (Section 5.1). This shows that if

YPy , the component of the search direction in the range space of the

active constraint Jacobian, is an uphill direction with respect to the

minimax function, then it is known that too many constraints are in the

active set and a constraint with a positive value and a negative multi-

plier estimate can be deleted to obtain a descent direction. There is

no analogue of Theorem 4 for the nonlinear programming problem NCP,

because c may have negative components. If the vector YPy is uphill

with respect to an artificial merit function such as a penalty function,

then it may be because there are too many constraints in the active set,

or it may be because the penalty parameter is not large enough.

There are other aspects which make it clear that solving MMP in a

special way is advantageous. Since the first-order constraint qualifi-

cations are always satisfied (see Section 1.2) there is no need to be

concerned over the existence of Lagrange multipliers when the active

constraint Jacobian becomes rank deficient. Also, as was pointed out

in Section 4, problem MMP is in some sense naturally scaled and the

first-order Lagrange multiplier estimates can take advantage of this

fact.

It should be clear by now how our algorithm is related to the

projected Lagrangian algorithms which have been proposed to solve NCP.

Wilson (1963), Robinson (1974), Han (1977a) and Powell (1977) all solve

successive inequality constrained QP's, so in that sense they are more

closely related to the method of Han (197Tb, 1978a) than to our method.

m~rray (1969a, 1969b), Wright (1976) and Murray and Wright (1978) solve
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successive equality-constrained QP's. However, their methods differ

from the others and from ours in the sense that they do not attempt to

step to the active constraint boundaries at every step but control how

far outside or inside the feasible region the iterates stay by means of

penalty and barrier parameters. This type of approach has proved to be

very successful for solving NCP because it balances the reduction of

the objective function with the reduction of the constraint violation

in a satisfactory way. However, this approach is quite annecessary for

solving MMP since it is always trivial to obtain a feasible point for EMP.

To put it another way, reducing the minimax functicn in the line search

always results in a step towards the constraint boundaries, although we

do not usually wish to step exactly to the boundaries by doing an exact

line search.

Constrained Problems.

Linear constraints can be handled by the algorithm we have presented,

since +',ey can be incorporated into the QP at each iteration. It follows

i .bove remarks however that nonlinear constraints cannot be handled

by gorithm for MMP in a straightforward way. As soon as nonlinear

constraints are introduced the natural merit function is lost and the problem

takes on the complexity of the general nonlinear programming problem NCP.

Of course nonlinear constraints can still be handled by nonlinear pro-

gramming methods, but it is important to recognize the increase in complexity.

Clearly the best approach would be one which takes advantage of the minimax

structure and introduces an artificial merit function dealing with the

genuine nonlinear constraints and not with those of EMP.
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